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Abstract— The goal of this paper is to develop modeling

techniques for complex systems for the purposes of control,

estimation, and inference:

(i) A new class of hidden Markov models is introduced, called
the optimal feature prediction (OFP) model. It is similar to
the Gaussian mixture model in which the actual marginal
distribution is used in place of a Gaussian distribution. Ths
structure leads to simple learning algorithms to find an
optimal model.

(i) The OFP model provides a unification of other modeling
approaches including the projective methods of Shannon,
Mori and Zwanzig, and Chorin, as well as a version of the
binning technique for Markov model reduction.

(iii) Several general applications are surveyed, includig in-
ference and optimal control. Computation of the spectrum,
or solutions to dynamic programming equations are possible
through a finite dimensional matrix calculation without
knowledge of the underlying marginal distribution on which
the model is based.

I. INTRODUCTION

These words are often attributed to Mark Shar@y:yes,
| was looking for. I'm so glad | remembered it. Yeah, what
| have wondered if | had committed a crime. Don’t eat with

The optimal prediction model is described in Proposi-
tion 1.1. From the construction it can be seen that this
is precisely the same as Shannon’s Markovian model first
introduced in [25].

Proposition 1.1: Suppose tha¥ is a stationary process on
Z, let u denote its marginal distribution, and lg? denote
the bivariate distribution,

p?(dzo, dz1) = P{Z(0) € dzo, Z(1) € dz1}.

Suppose that Radon-Nikodym derivative,

2
wldz0, 4) (1)

p(dzo)
exists for eachry € Z and A € B(Z) (the Borel sigma field
onZ). Assume moreover th&t( -, A) is measurable for each
A, T(zo, -) is a probability measure o8(Z) for eachzy.

ThenT defines a transition kernel ahx B(Z) with invariant
measureu. O

T(ZQ,A) = 20 € Z,

In this paper we survey a range of new applications and
new formulations of feature-based Markovian models. Of
particular interest in current research are applicatiams t

your assessment of Reagon and Mondale... Mr. Shaney is in  spectral theory, hypothesis testing, and to machine legrni
fact a fictional person. The true architect is Don P. Mitchell In this paper emphasis is focused on applications to machine
but the inspiration comes from Claude Shannon. learning.

Shannon introduced the idea of low dimensional Markov The paper is organized as follows. In the following section
models to replicate features of English language. This age introduce the optimal feature prediction (OFP) model.
pears as motivation for the notion of entropy in his famou$his is a generalization of the optimal prediction model
1948 papeA mathematical theory of communication, which  designed to combine the statistical flexibility of Shanson’
is regarded as the birth of modern information theory [25]model with the computational features of finite state space

There have been similar independent efforts in the physitédden Markov models. Among the most compelling ap-
community by Mori [22] and Zwanzig [29] to derive reducedplications of this technique is to decentralized control of
order models to describe complex systems. In the Morcomplex networked systems. Optimal solutions are in génera
Zwanzig formalism, a low-dimensional model for phasentractable since even a Markov model with finite state
variables (what we call “features”) is given by a generalizespace gives rise to an infinite dimensional Markov decision
Langevin equation that has a Markovian element, a nomprocess [9], [4], [3]. In Section Il we illustrate with a gjle
Markovian “memory” element and a random element. Theetwork example the application of Markovian modeling to
so-called (first-order)optimal prediction model developed decentralized control. Section IV contains conclusiond an
more recently by Chorin and co-workers [6], [7] coincidessome unanswered questions.
with the Mori-Zwanzig formalism when the non-Markovian

. Il. M ARKOV MODELING
dynamics are removed.

Proposition 1.1 is a trivial consequence of the definitions,
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yet its implications are surprisingly rich. A roadblock to
its application is that the transition kern€&lis not known.
Moreover, in general it remains an infinite dimensional
object, in which case learning the entire transition kernel
is not feasible.

Here we introduce a simplified class of models for which
learning the transition kernel amounts to a finite-dimenaio



optimization problem. The model class retains the impartaisome properties of finite-rank transition laws are summa-
feature of the optimal-prediciton model that certain syead rized in the following:
state statistics are captured exactly. Proposition 2.1: The Markov chainZ with finite-rank
To define the OFP model for a stationary proc&ssve transition kernel (4) has the following properties:
begin with the following structural assumption. Lietlenote 0 Z is, of course, a Markov chain on the state space

the marginal distribution oz, and ;2 the bivariate distri- (i) The N-dimensional stochastic process defined by
bution defined in Proposition 1.1. Hengeis a probability (51(2(15)) SN(Z(t)))T +> 0. is a Markov chain on

measure oi§(Z), andy? is a probability measure of(Z%). N
Itis assumed throughout the paper thapossesses a density (iiiy Z is also a hidden Markov model: There is a finite
with respect to the product distribution, state space Markov chaih on the finite se{1,..., N},

12 (dzo, dz1) = p(z0, 21)p(dzo)p(dz1) ) an i.i.d. proces$¥ onR, and a functionp: {1,..., N} x

R — Z such that,
wherep: 7?2 — R, is measurable. We also use the more .

compact formu? = pu ® p where for two probability Z(t+1) = p(I(t), W(t+1)), t>0.
measures or3(Z) and two functionss, on X the outer O

products are defined by, The paramete® is chosen so thagt? ~ 2. In the fol-

u@p (dzo, dz1):=p(dzo)u(dz1), s®@r (z0,21):=s(z0)r(21). lowing subsections we introduce several optimizatioreciat

. o ) and describe their properties. Section II-E briefly dessib
The existence of a density in (2) is guaranteed when the, . - optimal parameter can be computed using Monte-
state spacé is countable. An example of a model for which~, 4 techniques.

this fails is the Markov process defined by thlimensional The simplicity of computation of an optimal parameter

Omstein Uhlenbeck process(t+1) = AX (t)+ BW (t-+1). is remarkable, given the difficulties associated with model

SUDPOSG thaW is i.i.d. N(0,]) ar_'d(A’_B)_ is pontrollable. construction for general HMMs. One reason for the sim-
In this caseu is a full-rank Gaussian distribution, and henc H

densi ith Leb icity is that there is less to be learned: Never do we
pOSSEsses a en5|ty_W|t respe ctiole €sgue measure. Smpt to estimatg. We shall see that in many applications
condition (2) holds withZ = X if and only if the matrixB

this full information is not needed. For example, solutions

has rankn. However, if this rank condition is relaxed then : ; ; ; ;
o to dynamic programming equations can be obtained using
(2) does hold withZ(t) := X(nt), t > 0 (see [21], where g w0 dimansional statistics.

these results are a consequence of the irreducibility tstreic

of the linear model). B. L, optimal model
The OFP model is obtained using an approximation to

the densityp. Let {r; : 1 < i < N} denote measurable,

real-valued functions o#, and define for given parameters
(0,:1<i,j <N}, £(0) = %/(Pe(zo,zl) — p(20,21))*p(dz0)u(dz1)  (5)

The Lo-mismatch-criterion is defined for ary by,

) N Computing the gradient of with respect to® and
pg(dzo, dz1) := Z 0i,57i(20)r; (z1)p(dz0) p(dz1)-  (3) setting this equal to zero gives the minimizer. The form of

=1 the solution and other conclusions are summarized in the
The transition kernel, is then defined using (1): following:
12 (d2, A) Prqposﬂon 2.2: Suppose tha{ri}_ are Ilnear_ly indepen-
To(z,A) = —=——"—, ze€Z, AeB(Z). dent in Ly (u). Then, the vecto®* minimizesé if and only
po1(dz) if the optimal-prediction constraints hold for eatland j:
where i 1(dzo) := p2 (dzo, Z) is the first marginal. ~ ~

The choice of basigr; : 1 < i < N} and the parameter Bo-[ri(Z(1))r; (2(t +1))] = E[ri(2(1))r;(Z(t + 1))], (6)

© will depend on which features we wish to capture in thgyhere the expectations are in steady-state. The unique solu
Markov model. We will see that the steady-state first angy,, is expressed

second order statistics of an appropriate function class ca

be captured precisely in the finite rank model. 0 ={0e};} =[R"(0)] 'R (1)[R"(0)] " (7)
We first explain how this model class is related to hidden )

Markov models. where R ;(0) = p(rir;) and R; ;(1) = p*(ri @ r;).

A. Finite rank models and HMMs C. Positivity and optimal prediction

The transition kernel has finite rank, in the sense that thereWhat is left out in Proposition 2.2 is the constraint
are functions{s;} and probability measurey:;} satisfying, that a transition kernel must be non-negative valued, with
N To(z,Z) = 1. The latter constraint is automatic under
To(z, A) = ZSi(Z)Mi(A), »€Z, AeB(Z). (4 the assumptions of Proposition 2.2 provided the constant
Pl function 1 lies in the span of the{r;}. One approach to



guarantee non-negativity is through barrier function rndth A. MDP models
For example, define the augmented cost function, Suppose thatZ,U) are a state and control process.

_ It is assumed thaU is defined by a stationary, perhaps
£p(0,¢) = £(0) + E/log(pg(zo’ 21))uldzo)(dz) randomized policy defined for some feedback lawia,

Minimization of £ can be cast as a convex program. P{UG) =u|Z' ;Z({t) =2} =P{U®t) =u| Z(t) = 2}
Alternatively, a parameter can be chosen by directly im-

posing the optimal prediction property on a subspace: For a = u]2)

given collection of functiong¢;} in L2(1) we can choose We can construct a Markov model foZ, U) using Proposi-

© = ©* to guarantee, for eachj, tion 1.1. This defines the transition l&on (Zx U) x (ZxU)

Ee [61(Z(6)6(Z(t + 1))] = E[6:(Z(1))6;(Z(t +1))] (8) ¥
This may not be possible while still respecting positivity, T((ff;)v (Zi)) = P{(iﬁiiii) = (fﬁ) ‘ (522) = (ZE)} (10)

but we can C]?nSt';’.Ct a convex ,COSt function to capture &here the expectation is in steady-state. A controlledsiran
approximate fit subject to positivity. tion law is then defined for each tripte zo, z1 by,
D. Relative entropy metric

— Z0 zZ1
The long-run entropy rate~*D(u™||u2) converges under Tulzo.21) = 2, (), (“1)) 1)
general conditions to the following function éf: Alternatively, suppose that we are given a bagis :
9 9 9 1 < ¢ < N} of functions onZ x U. We can then

€p(0) = {p7, log(ps) — log(pe1)) + b(k”) ©) construct an a}é)proximation to the bivariate distributidn o
where the inner-product notation denotes integration, ar(c([Z]Efggy ([Z]Ef;ﬁ;)) in steady state, and then a transition law
b(1?) is independent of. This is known as the Donsker- of the form,
Varadhan rate function that appears in the generalization o T((Z“) (Zl))

wo/? \u1i

Sanov’s Theorem for Markov chains [8], [14].

The rate function is known to be convex, and hence N .
minimizing £p can be cast as a convex optimization problem. - Z 07;5i(20, u0)rj (21, ur)u(z1)¢(ur | 21)
This can be refined to include optimal prediction constgaint L=l
of the form (8). with ©* obtained using (7) based on the joint process

(Z,U). With (10) obtained using a basis, the MDP model is

E. On-line computation . . ) : R
. . ) . again obtained using (11). The resulting controlled tr@onsi
Computation of©* based on the form given in Proposi-|,,\ is expressed

tion 2.2 is possible by naive Monte-Carlo given observation v
of Z in s_teady—state. _ _ Tu(z0,21) = 325 =1 OF;8i(20,u0)rj(21) p(21) (12)
For either the convex, non-quadratic cost functions h ith liaht ab f notati defi _
Ep(0,¢) or Ep(O) the gradient and Hessian have simplevzvz erg with a stignt a uze 0 t?]o ation yvel d? :ﬂi‘éztl) = ¢
forms that facilitate the application of stochastic gradier uTi(21,8)¢(u | 21), andu is the marginal distribution o
stochastic Newton-Rapshon techniques that are convergéht
to the unique optimizer. B. Q Learning
Note that the Baum-Welch and EM algorithms are de- . .
signed to achieve the same computational goals for HMMs. Given a Markov model, of the form (11) or (12), and given

. cost functionc: Z x U — R, the average-cost dynamic
These algorithms are only known to converge to a local . s
; - programming equation is expressed,
optimum in general.

I1l. OPTIMIZATION min{e(z, u) + Tuh” (2)} = h"(2) + 1.

~ Optimal prediction models have clear applications to pokyheres, is the optimal average cost, typically independent
icy improvement or approximate optimization in controlledof the initial conditionz, andh*: Z — R is therelative value

stochastic systems. In this section we describe the extensiunction. Watkin's approach is based on the substitution of
to controlled Markov models (or MDPs). h* by the so-called ©-values”,

The basis approach utilized in the construction of the
OFP MDP model is similar in spirit to the use of bases to ~ H"(z,u) = c(z,u) + Tuh™ (2), z€Z, uel.
approximate value functions or policies in machine Ieagninl_etting H*(2) = min, H*(z,u), we find thatf/* satisfies
[26], [2], [28], [23], [18]. The contribution of this papesi the fixed_point equation, ’
the new class of models, as well as novel application. In

particular, in Section llI-D we show how these ideas can H*(z,u) + 1. = c(z,u) + T, H" (2), z€Z,uel
be used to construct decentralized policies based on local, (13)
distributed MDP models. If U is defined by a randomized policy that assigns positive

We begin with Markov model construction for non-probability to each feasibléz,«), then we can estimate
Markovian models. H* using a simple Monte-Carlo recursion. Stability of the



algorithm is simplified using the ODE method for stability Suppose thaX is a state process that can be decomposed
of stochastic approximation introduced in [5]. as a pair of processex (t) = (X'(t), X%(t)), t > 0. In
Estimation ofH* is facilitated when the MDP model is of the numerical experiments described below the proc€ss
finite rank, of the form (12). In this case we conclude froms assumed to be defined by an MDP model, but this is
(13) that, for some vectot*, not necessary. We viewZ = X' as the feature variable:
It together with its local control proceds’ will be used
H* (2, u)+m.—c(z,u) = Zo‘rsi(z’“)’ (z,u) € ZxU. 4, cc?nstruct a local OFP MDP m%del. gecond model is

Computation ofa* is straightforward. We thus arrive at Obtained based e
an alternative approach to finite-dimensionally paraniegdr ~ Suppose that a cost function has been defined with respect
Q-|earning_ The On|y other such approach’ introduced réo the full stateX. To Complete the construction of an MDP
cently in [18], is known to be convergent only under strongmde' for Z it is necessary to define a cost function on this
conditions on the basis that parameteriz&s[18], [17]. feature variable. For a fixed policy, consider the following
Oncg H* is obtamed,.the_ optimal policy for the MDP ez, u) = E[e(X(t) | Z(t) = 2, Ut) =u]  (15)
model is given by the minimizer,
where the conditional expectation is taken in steady-state
¢*(2) = argfﬁnH*(zv“)v z€L For the optimal prediction model this is consistent: By the

. ) . smoothing property of the conditional expectation,
Conditions onT,, and on(Z, U) will be required to ensure

that the resulting policy will be optimal, or even stabitigi Efe(Z(t), U(t)) = Ele(X(?))] (16)

for Z if this process is not Markovian. In this way we have projected the cost onto the local process

C. Sensitivity (Z,U).

Schweitzer's approach for sensitivity analysis in Markov Sta_nda_rd MDP methodology _suggests _Se"efa' approa_lches
models [24] can be extended to optimal-prediction modefé) po_llcy improvement by adapting v(_allue iteration or policy
for non-Markovian processes. Suppose we have a family §¢ ratlo.n [1.1]’ [.1]’ [.10]’ [26].’ [2]. A direct a.pproach b ad;g
processe€®, indexed by a parameterthat lies in a convex on policy iteration is described as follows: We begin with

. 0 . " o
set. For simplicity it is assumed that the parameter is gcald randomized policyy® that assigns positive probability

and that the common state spates finite. Let T, denote to any feasible control value — The motivation for this

the optimal prediction model, and Igt, denote the invariant initialization is exactly as for simulated annealing oraaet

measure fofl,, interpreted as a row vector. Assume that a?ritic methods [26], [2]. Based on this initial condition we
) . n .
cost functionc on Z is given, and letge — 3 c(2)pa(2) generate a sequence Markov modgld” : n > 0}, and a

denote the steady-state cost sequence of policie$s™ : n > 0} inductively: Forn > 0,

Let 1® u, denote the rank-one matrix with all rows equalg_'ven the_"th pollcy, o
{0 f1o. The inverse/, = (I — Tp + 1® pa)~! is known as (|) Obtam the optlmlall-predlctlon MDP modé&l
the fundamental matrix [21]. The functioné, := U,c solves  (ii) Obtain the conditional cost (15),
Poisson’s equatlon;l_“aca =Cq — C+ Nq- . (2, u) 1= E“b(n)[c(X(t)) | Z(t) = 2, U(t) =]
The formula (14) is well-known for Markov chains [24].
We believe that this formula can be used to constructThe right hand side is the expectation in steady-state,
algorithms for policy improvement based on steepest déscenbased on the policy®.
following [12], [13]. (iii) Obtain an optimal policyy™ for the MDP model with
Proposition 3.1: Suppose thaf, is irreducible and that controlled transition law/™ and cost functiore®.
the derivative with respect ta exists for eachv. Then the (iv) Define a new randomized policy via,

marginal,, is differentiable, and its derivative is given b n n w n
ginaliq g y Y = ¢ 4 4, (¢ — ¢) (17)
! /
Ha = paToUa (14) where{~,} C (0,1) is a non-negative gain sequence.
In particular, for any functiorr, the sensitivity of the mean The reason for using™® and noty™ in (iv) is that the latter
is given by is typically a deterministic policy — For each stéfét) = z,
there is a unique optimal control valué(t) = v* defined
M= 2 a(z0)Th (20, 21)éa(21) e o )
o a0/~ al<0; <1)Cal<1 by ¢™(z). A deterministic policy is undesirable since some
0,21 state-control pairs are never visited, and hence learrsng i
O inhibited.

D. Local Markov Models and Distributed Control The _apphcatmn of a basis can be used to streamline
estimation of the projected cost (15).

We now show hOW. the OFP MDP model can be used | gt {y¢:1<1i</{.} denote a collection of functions of
to construct decentralized control laws in complex systems, ) and for3 € R’ define,
For simplicity we restrict to a special case consisting a tw
locations, each subject to local control. ta(z,u) =Y Bifs(z,u), 2€Z uel.



To approximate the projected cost, recall that the condliio depend or(fﬁj) The goal is to build an approximate model
expectation in (15) is nothing but projection: The L, described as an MDP model at Statibn

projection of the random variabl€ X (¢)) onto the subspace  This setting isoptimistic since control is based on virtually
of all random variables that can be expressed as a functioo information. It is far more restrictive then the setting o
of the pair(Z(t),U(t)). Consequently, the conditional ex- the MaxWeight policy, which assumes knowledge of buffer

pectation satisfies levels at down-stream nodes of one-hop distance [27], [20].
_ For the purposes of model and policy construction we
E[(C(X(t)) —e(Z(), U(t)))g(Z(t), U(t))] =0 set Z(t) = X'(t) = (Qi(t),Qu(t) and X2(t) =

for every functiong for which E[(g(Z(t),U(t))?] < co. (Q2(t),Q3(t)). The local control is the paifU: (t), Us(t)),
We relax this requirement, and instead project onto thgubject to the constraint that (¢) + Uy (t) < 1. We assume
finite-dimensional space of random variables spanned [B§at the policy is non-idling, meaning thét (¢) + Us(t) = 1
{Y8(Z(t),U(t)) : 1 < i < {.}. The values* that achieves wheneverQ () + Qa(t) > 1.
the projection satisfies for eacgh We follow the four steps outlined above: Given théh
B . - policy,
E[(C(X(t)) —es(Z(t), U(t)))wi (Z(®), U(t))] =0 (i) Obtain the optimal-prediction MDP model
We thereby obtain the explicit representation, T3;7u4((fcl), (;ﬁ)) =
B = Ec_lE[C(X(t))’L/JC(Z(t), U(t))] Q1(t+1)=y1) | (Qi(t)=z1\ (Ur(t)=u1
. . . (18) P (Q4(t+1): 4) (Q4(t):m4)’ (U4(t):u4)
Se = ER(Z(1), UMW (Z(1), U], { o o _ j
where the conditional probability is taken in steady-state

with ¢ = (¥f,...,97 ). This representation is similar to (i) Obtain the conditional cost,
the expression foB* given in (7), and in fact the derivation

is analogous. It is clear that* can be estimated using ¢((:!), () = E[C(Ql(t—l— 1))‘(8}183}1), (gﬁgjﬂ)}
Monte-Carlo, just a®* is estimated.

again taken in steady-state.

E. Example: Completely decentralized control of a network (i) Obtain the optimal policy¢™ for the MDP model

Figure 1 shows a network example to illustrate the con-With transition law7™ and coste. For the average-cost
struction of a decentralized policy. This network consists optimality criterion this is obtained by solving the dynami
of two stations, four buffers, with two exongenous arrival Programming equation,
processes. We take a controlled random walk (CRW) model™ (;}) = —n™+
of the form. min{e((21), (1) + 5, T8 ((2): (A () } (@0

Qit+1)=Q1(t) = S1(t+ UL (t) + A:(t + 1) = ‘ ‘

Qua(t +1) = Qu(t) — Salt + 1)Us(t) + Ss(t + 1)Us(t) where ™ is a constgnt — equal to the average cost

(19) under the optimal policy for thexth model. For each

where the dynamics at Statich are defined analogously. (;.), the valueg™ (z1,z4) € {0,1} x {0,1} is taken as
The sequence; is taken Bernoulli with parameter;. The ~ any minimizer in (20), where the minimum is over all
two arrival processegA ;, A3) are i.i.d., taking values in the admissible controls.
positive integers. In the numerical results that followytaee  (iv) Define a new randomized policy via (17).
scaled Bernoulli: For a fixed integer> 1, the distribution A sequence of policies is obtained at Station 2 following the
of k=t A; is Bernoulli fori = 1, 3. symmetric procedure.

We letc: X — R4 denote a cost function on the state In the numerical results below the following parameter
spacex = Zi of buffer levels. In the numerical results thatvalues were usedi; = us, ps = pg = 3p1, anda; = ag =

follow we takec(z) = ||z[j1, the ¢, norm. 1uop, wherep is the network load, taken to he= 9/10.
The burstiness parameter for the arrival process was taken t
m\_?l ® @2(t) ber = 2. The model was constructed so that only one event
e 2one]f ” can occur at a time: For each: # j, and eachk,
Station 1 Qi(l) Station 2 Q_.;([,) @3 S t S t) = S t A t) = 0
- “”1E‘7 /13E<—/ l()]() z() k()

This model is of the form obtained vianiformization [15],
Fig. 1. A two-station network [20]-
Observe that the system is completely symmetric, and
We restrict to decentralized Markov policies, possiblyhence local models at the two stations can be assumed iden-
randomized. Hence, for some feedback lawX — [0,1]*,  tical. Details of the implementation of the four estimation
¢ vt modeling-control steps are described as follows.
PLUL) = 11 Qo Up ™} = 6il), Qlt) == t=20. (i) The optimal-prediction MDP model'™ was obtained
By decentralized we mean that the functiohsz), ¢4(z) after10% samples. Only the conditional statistics of arrivals
should only depend onﬁii), and¢s(x), ¢3(x) should only  to buffers4 and?2 are required to specify this model. The



conditional probability is defined fot = 0,1 by, average cost from successive policies is monotone denggasi

Pat (a | (2)) = [19]. The lack of monotonicity seen here may be a product
of the fact that the modef'y) w((31)s (U1)) changes with.
P{S3(t + 1)Us(t) = 1| Q1(t) = 1, Qu(t) = z4] Another factor that impairs performance is the impositién o
Estimates were obtained via Monte-Carlo, exploiting sym-randomization in Step (iv) of the procedure.
metry of the model. GiverQ:(t) = 1, Qu(t) = x4, Shown on the right in Figure 3 is an illustration of the

and Qs(t) = 3, Q2(t) = x5, updates of the entries fifth policy obtained using this algorithm. As in the “serve
pAI(l (" )) and p (1 | ® )) were obtained at time the longest queue” policy shown on the left, Buffer 1 recegive

¢ via the Monte-Carlo recursions, higher priority if its contents are larger. However, theipgpl
1 1 shown on the right in the figure is more similar to a threshold
pA‘{(l | (“)) - pAI(l | ( )) policy of the form “Serve buffer 4 whenevé); < z; and
+ (=par(L] (1) +maUs(t))/(t+1) Q4 >1", wherez; ~ 10.
pA{L(l | (;2)) — pAI(l | (m3)) Initial Policy Final Policy

@t
45

+ (=par(L] (52)) + mUw(1)/(t +1) .

35

(i) The conditional cost was obtained afted® samples. ;
Again exploiting symmetry, the Monte-Carlo recursions at 7 @
timet, givenQ(t) = z = (x1, 22,3, 24), are expressed

() () — 5((2), (2))

15

P{U\(t) =

10

+ (( )7( )) )))/(t+ 1) o 5 10 12”20“)275”3(1“;315“ 40 45 ﬂ‘ 0 5 10 15 20 25 30 35 40 45 5042‘

E((Ig) (U3)) - E(( ) (us)) Fig. 3.  Plot illustrating the initial policy and the fifth poy. Each is
x2/7 \ug 7 \uz randomized — The color indicates the probability tiiat(t) is equal to
((ig) ( )) Q)/(t+1) one (which is one minus the probability th (¢) is equal to one, provided

Q1(t)+Qa(t) > 1). 1_'he dark blue indicates a value of approximately,
(iii) The optimal pol|cy ¢™ for the MDP model with  and dark red approximately.o.
transition lawT® was approximated vi&, 000 steps of

value iteration [20]. The average cost for the decentralized policy illustrated i
(iv) The new randomized policy was obtained using theFigure 3 is approximately 25. We consider two classes of
update rule (17) withy,, = 1/(2y/n + 1). policies for comparison: Versions of the MaxWeight policy

(MW) and logarithmic safety-stock policies (LogSS). See
[ 1 Average Cost Section 4.8 of [20] for an introduction to the MW policy.
sol | Estimated Using Monte Carlo Each of the policies considered is non-idling. Hemge=

1 wheneverz, = 0 andz; > 1. If z4 > 0 then, provided
x1 > 1, the policies are specified by the following decision

451

40 -

as| regions:

sor MW : U, = ]I{,ul(:zzl —x9) > %n,u4:1:4}

25

200 5 10 15 20 25 lterations LOgSS : U1 = ]I{:I;2 + 3 < 2TL log(l + |.’I]|/(2’I’L))}

where|z| denotes thé; norm. The parametet was varied
from 0 to 10, where forn = 0 we take0log(oo) = 0.
The first equation describes the MW policy defined by

Figure 2 shows the average cost, estimated using two mihe diagonal matrix) = diag(1,n/5,1,n/5). The standard
lion Monte-Carlo steps, for each of ts policies obtained. MW policy is obtained withn = 5. The LogSS policy is
The initial policy was a perturbation aferve the longest intended to approximately minimize the workload process,

Fig. 2. Average cost for theth policy, n = 1, 2, ... 25, estimated from
two million observations.

queue: while minimizing ¢(Q(t)) subject to the current workload
_ value for each timg — see [20] for further discussion (in
PLUL(1) = 1} = {0-85 it Q1(t) = Qa(t); particular, Example 6.7.2).
0.15 if Q1(t) < Qa(t) and @ () > 1. Results from simulations using these policies are shown

(21) in Figure 4. The performance of the decentralized policy is
Note that the average cost shown in Figure 2 is not monotoag@proximately equal to that of the standard MW policy. The
in the number of iterations. The cost drops quickly, andlogSS policy withn € {2,...,10} is clearly the best of
then increases slightly. Similar behavior was seen in athe three policies in terms of performance, but this policy
experiments. requires complete global information.
The four-step algorithm is intended to mimic the policy Once again, the quantity of information utilized by the
improvement algorithm (PIA) for which it is known that the decentralized policy is much lower than would be expected
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Fig. 4. Average cost performance of the decentralized p@anpared to
MaxWeight and LogSS.

in applications. In the cooperative setting consideree ftés

not unrealistic to assume sharing of global informatiorchsu
as generalized workload in the routing model, or a gIobaI
cost variable in other models. [t

IV. CONCLUSIONS

The optimal-prediction method is a standard work-horsé!!
in many areas. Its application in machine learning is eithgiy
unrecognized, or taken for granted - nobody believes the
real world is Markovian! By recalling the optimal prediatio
properties of Shannon’s construction we have identifieH]
generalizations and new applications. [14]

In particular, the standard approach to decentralized con-
trol of MDP models is through the introduction of a belief
state to transform the partially observed optimal contrdls]
problem to one with full observations. While this approac 6]
can in principle lead to an optimal policy, the complexit
is severe. We have demonstrated an alternative approach to
decentralized control through the construction of mugtipl

X . [17]
local Markovian models. Further details and other examples
are described in the working paper [16].

Among the other applications considered in current rlél

search are,

(i) Applications in other decision making domains such asl1°]
finance.

(i) Hypothesis testing and change detection.
(iif) Control variates for simulation variance reduction 1]

The open problems are too long to list. Among the most

interesting is the question of how to construct suitablelloc

variables for application in decentralized control.

[20]
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